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ABSTRACT

Let X be a Banach space, K be a scattered compact and T : BC(K) → X

be a Fréchet smooth operator whose derivative is uniformly continuous.

We introduce the smooth biconjugate T ∗∗ : BC(K)∗∗ → X∗∗ and prove

that if T is noncompact, then the derivative of T ∗∗ at some point is a

noncompact linear operator. Using this we conclude, among other things,

that either T (Bc0 ) is compact or that ℓ1 is a complemented subspace

of X∗. We also give some relevant examples of smooth functions and

operators, in particular, a C1,u-smooth noncompact operator from Bc0

which does not fix any (affine) basic sequence.

Introduction

The theory of linear operators from C(K) spaces is a vast and important part

of Banach space theory. One of the approaches to this subject is through the

reduction (or fixing) properties of a given T ∈ L(C(K), X). Let us recall the

following classical result of Pelczynski, and refer to Rosenthal’s article in [JL,

Chapter 36] and [DU, Chapter VI].
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Theorem 0.1: Let X be a Banach space, K be compact, and T : C(K) → X

be a non-weakly compact linear operator. Then there exists c0 ∼= Y →֒ C(K)

such that T ↾Y acts as an isomorphism. Moreover, if K is scattered, the same

result holds for T a noncompact linear operator.

In his work on the Dunford–Pettis property, Pelczynski [P1, P2] relying on

the use of vector measures, induction by the degree of the polynomial and the

use of biconjugates P ∗∗ to polynomials (which he was able to define for weakly

compact polynomials or in the case when c0 is not contained in X) obtained the

following nonlinear extension of Theorem 0.1.

Theorem 0.2: Let X be a Banach space, K be a scattered compact, and

P : C(K) → X be a noncompact polynomial operator. Then c0 →֒ X .

In the same paper Pelczynski observed that, in general, the assumption of

scatteredness cannot be removed, by constructing a homogeneous polynomial

P : C[0, 1] → ℓ1 for which P (BC[0,1]) contains Bℓ1 . Let us remark that from [H3]

and the fact that every Banach space containing ℓ1 (a condition characterizing

precisely all C(K), where K is a nonscattered compact) has an ℓ2 quotient, it

follows that for every C(K), K nonscattered and every separable Banach space

X , there exists a homogeneous polynomial P : C(K) → X of degree 2, such

that P (BC(K)) contains BX . This, of course, means that a structural theory

for polynomials from C(K), K nonscattered compact, along the classical lines

of Theorem 0.1 is not possible.

Our aim in the present paper is to investigate Pelczynski’s-type result for gen-

eral C1,u-smooth operators. Note again that C1-smoothness alone leads only

to a trivial theory (due to nontrivial work of Bates [B], [BL, p. 261]), stating

that arbitrary separable Banach space is C1-smooth range of every separable

Banach space. In our paper we treat the localized version (which is equivalent

to the original one for polynomials) when T : BC(K) → X is Fréchet differen-

tiable, and T ′ is uniformly continuous. The following question (suggested by

our previous work in [H1], [H2], and explicitly asked also in Godefroy’s article

in the Handbook [JL, p. 799]) is the source of this note.

Question 0.3: Let X be a Banach space, K a scattered compact and

T : BC(K) → X

a C1,u-smooth noncompact operator. Is then c0 →֒ X?

Keeping in mind the reduction and fixing properties of linear operators, we

can propose the following variants of the question.
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Question 0.4 (reduction): Let X be a Banach space, K be a scattered com-

pact, and T : BC(K) → X be a C1,u-smooth noncompact operator. Does there

exist c0 ∼= Y →֒ C(K) such that T ↾Y is noncompact?

Or even

Question 0.5 (fixing): Let X be a Banach space, K be a scattered compact,

and T : BC(K) → X be a C1,u-smooth noncompact operator. Does there exist

a sequence {un}∞n=1 in BC(K), such that both {un}∞n=1 and {T (un)}∞n=1 are

equivalent to the canonical basis of c0?

It is obvious that the condition in Question 0.5 is the strongest and implies

the other two, whose mutual relation is not quite clear. In the linear case,

the questions are equivalent due to Theorem 0.1, and for polynomial operators

Question 0.3 has a positive answer, due to Theorem 0.2. In our paper, we

develop some basic theory of smooth nonlinear operators, in order to deal with

Questions 0.3–0.5. The theory is formulated for C(K), K countable (or just c0)

spaces, but due to the general reduction results (Theorem 1.5), the statements

remain valid (with obvious modifications) for all C(K), K scattered.

Let us pass to a brief discussion of our results. In Section 1 we show that

every C1,u-smooth operator T : BC(K) → X , K countable, has a canonical

C1,u-smooth extension T ∗∗: BC(K)∗∗ → X∗∗ (in the general C(K), K scattered,

situation, the biconjugates T ∗∗ can also be introduced, but their domain will

be contained in Y →֒ C(K)∗∗, where Y is the w∗-sequential closure of C(K) in

(C(K)∗∗, w∗)). We prove that Question 0.4 has an affirmative answer, provided

we consider a reduction to an affine subspace Y ∼= c0 of C(K) (i.e., a subspace

not necessarily containing the origin). For a linear subspace Y ∼= c0 the answer

to Question 0.4 is trivially negative even for polynomial operators. In Section 2,

we focus on operators from Bc0 . The main general result (using the reduction)

is that if T : BC(K) → X , K countable, is a C1,u-smooth noncompact operator,

then there exists a point x∗∗ ∈ BC(K)∗∗ at which (T ∗∗)′(x∗∗) ↾C(K) is a non-

compact linear operator. This implies (for all scattered K), in particular, that

ℓ∞ →֒ X∗∗, a weak answer to Question 0.3 (it also implies that Question 0.5 is

true for T ∗∗). For special classes of X , such as duals, weakly sequentially com-

plete spaces, Banach lattices or spaces with PCP (in particular, RNP) property

the statement in Question 0.3 is indeed true. In Section 3 we investigate the

summability properties of smooth functions on c0, which are closely connected

with Question 0.5. By a result of Aron and Globevnik ([AG], see also an earlier

related result [Bo]),
∑∞

i=1 |f(ei)| <∞, for every polynomial f on c0. This type



32 R. DEVILLE AND P. HÁJEK Isr. J. Math.

of result implies that the answer to (affine version of) Question 0.5 is affirmative

for polynomial operators, improving Theorem 0.2.

As we will show, for C1,1-smooth functions this property fails, and this allows

us to construct in Section 4 a C1,1-smooth counterexample to the general state-

ment in Question 0.5. Unfortunately, our results are not strong enough to solve

the original Question 0.3. So in fact our paper contains indications going in both

directions. It seems, however, that our conditions on X basically exclude all the

known examples of X which come in mind while seeking a counterexample to

Question 0.3. In particular, the Bourgain–Delbaen L∞ spaces [B] without c0,

Gowers’ space [G] without c0 or boundedly complete basic sequence, spaces of

JT type (Ghoussoub–Maurey [GM]) all satisfy Question 0.3. Moreover, rely-

ing on Bourgain–Pisier results [BP] we know that if there exists X violating

Question 0.3, then there also exists such L∞ space.

Let us now establish the terminology and notation. Let X,Y be Banach

spaces. Let ω(t): R
+ → R

+, ω(0) = 0 be a nondecreasing function. We say

that a function f : S → X , S ⊂ Y has modulus of continuity ω(t), when-

ever x, y ∈ S, ‖x − y‖ < ε implies that ‖f(x) − f(y)‖ < ω(ε) (the definition,

of course, makes sense for mappings between general metric spaces). A con-

tinuous (nonlinear, in general) operator T : S → X , where S ⊂ Y is called a

C1,u-smooth operator if T is Fréchet differentiable on int(S) and there exists

a modulus ω(t) such that both T and T ′ have modulus of continuity ω(t). By

C1,1-smooth operator we mean an operator for which T and T ′ are Lipschitz.

An operator T : S → X is called weakly sequentially continuous (wsc)

if it maps weakly Cauchy sequences {xn}∞n=1 ⊂ S ⊂ Y into norm convergent

sequences {T (xn)}∞n=1 ⊂ X . An operator T : S → X is called compact if

T (S) ⊂ X is a norm compact set. By results in [H2], a C1,u-smooth operator

T : BC(K) → X , K scattered, is wsc if and only if it is compact. For subsets

M,N ⊂ N we use the notation M < N if max(M) < min(N). If one of these

sets is a singleton, we may abbreviate this notation by replacing the set with

its element. The symbol X ∼= Y indicates that the Banach spaces X,Y are

isomorphic. Given a scattered compact K, and a point p ∈ K, we will use

the notation C0(K) = {f : f ∈ C(K), f(p) = 0}. In the statements regarding

C0(K) below, it is understood that p is fixed but arbitrary. We also use the

simple fact that C0(K) ∼= C(K) for all infinite scattered compacts. Recall that

a Banach space X has the point of continuity property (PCP), if every weakly

closed bounded subset of X contains a point of weak-to-norm continuity for the

identity mapping.
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1. Smooth operators from C(K) spaces

Recall the basic fact that: given two Banach spaces E,F , for any T ∈ L(E,F ),

there canonically exists a conjugate T ∗ ∈ L(F ∗, E∗), and thus also a bicon-

jugate operator T ∗∗ ∈ L(E∗∗, F ∗∗). Pelczynski [P2] observed in the proof of

Theorem 0.2 that notwithstanding the lack of duality, biconjugate operators

can be canonically defined also for weakly compact polynomial operators from

P(C(K), X) spaces. In this section we are going to generalize this definition fur-

ther for all C1,u-smooth operators T : BC(K) → X , K countable and arbitrary

separable Banach space X . For a general C(K) , K scattered, a biconjugate can

be defined along the same lines, except that its domain will be the w∗-sequential

closure of BC(K) in (B∗∗
C(K), w

∗). Since our later results rely on a separable re-

duction argument, we do not treat the general case here. Let us mention that

similar generalization is in fact possible for operators acting from spaces of class

C, introduced in [H2]. The next lemma is a variation on Lemma 5 from [H2].

We sketch a proof for the reader’s convenience.

Lemma 1.1: Let K be a scattered compact, X = C(K)or C0(K), f : BX → R

be C1,u-smooth, {xn}∞n=1 be weakly Cauchy in BX . Then {f ′(xn)}∞n=1 is norm

convergent in X∗.

Proof: By Lemma 5 and the proof of Theorem 10 of [H2], f ′(xn) is relatively

compact norm. By a standard argument, it is enough to prove the result under

the additional assumption that sup{‖xn‖ : n ∈ N} = r < 1. If we assume that

φ = limn→∞ f ′(x2n), ψ = limn→∞ f ′(x2n+1), and 0 6= h ∈ (1 − r)BX , we have

the following:

f(xn + h) = f(xn) +

∫ ‖h‖

0

f ′
(

xn + τ
h

‖h‖
)( h

‖h‖
)

dτ = f(xn) + f ′(xn)(h) +Rn,

where |Rn| ≤ ω(‖h‖)‖h‖. So 0 = limn→∞ f(x2n + h)− limn→∞ f(x2n+1 + h) =

limn→∞ f(x2n) − limn→∞ f(x2n+1) + (φ − ψ)(h) + limn→∞(R2n − R2n+1) =

(φ − ψ)(h) + R, where |R| ≤ 2ω(‖h‖)‖h‖. Letting ‖h‖ → 0 we see that

(φ− ψ)(h) = o(‖h‖) and so φ = ψ.

Proposition 1.2: Let K be a countable compact, X = C(K) or C0(K),

f : BX → R be C1,u-smooth. Then there exists a canonical C1,u-smooth and

w∗-sequentially continuous extension f∗∗: BX∗∗ → R, f∗∗ ↾BX
= f . More-

over, (f∗∗)′(x∗∗) ∈ X∗ →֒ X∗∗∗, for all x∗∗ ∈ BX∗∗ i.e. the derivatives are

w∗-continuous functionals.



34 R. DEVILLE AND P. HÁJEK Isr. J. Math.

Proof: Since X is c0 saturated ([PS], for class C we have to invoke [H2, Propo-

sition 6] instead), ℓ1 6 →֒ X . For 0 < λ ≤ 1 we have by Odell–Rosenthal’s

theorem ([LT1, p. 101]) that every x∗∗ ∈ λBX∗∗ is a w∗-limit of a sequence

{xn}∞n=1 ⊂ λBX . (In fact, as the referee of this note has pointed out, a simpler

argument using Alaoglu’s theorem and C(K)∗ = ℓ1 can be employed here.) We

know that limn→∞ f(xn) exists, so we set f∗∗(x∗∗) = limn→∞ f(xn). We need

to check that this definition is independent of the choice of {xn}∞n=1. However,

this is immediate since if x∗∗ = w∗ − limn→∞ x2n = w∗ − limn→∞ x2n+1, then

x∗∗ = w∗ − limn→∞ xn and the result follows due to wsc property of f again

([H2]). Next, we have to verify that f∗∗ is C1,u-smooth. Let us check first

that for x∗∗ ∈ λBX∗∗ , (f∗∗)′(x∗∗) = limn→∞ f ′(xn) = φ ∈ X∗ (the limit ex-

ists due to Lemma 4 of [H2]). For h∗∗ ∈ (1 − λ)BX∗∗ , h = w∗ − limn→∞ hn,

hn ∈ (1 − λ)BX we have

f∗∗(x∗∗ + h∗∗)− f∗∗(x∗∗) = lim
n→∞

(f(xn + hn)− f(xn)) = lim
n→∞

f ′(xn)(hn) +Rn

where |Rn| ≤ ω(‖h‖)‖h‖. Thus

|f∗∗(x∗∗ + h∗∗) − f∗∗(x∗∗) − lim
n→∞

φ(hn)| =

|f∗∗(x∗∗ + h∗∗) − f∗∗(x∗∗) − φ(h)| ≤ ω(‖h‖)‖h‖,

and the conclusion follows. Let us now indicate why f∗∗ and (f∗∗)′ have

the modulus of continuity ω(·). This clearly follows from the following

fact. For x∗∗, y∗∗ ∈ λBX we can find sequences {xn}∞n=1, {yn}∞n=1 ∈ λBX

such that ‖xn − yn‖ ≤ ‖x∗∗ − y∗∗‖ for every n ∈ N, and moreover x∗∗ =

w∗ − limn→∞ xn, y∗∗ = w∗ − limn→∞ yn. Indeed, by the Odell–Rosenthal’s

theorem [LT1, p. 101], choose first {xn}∞n=1 ∈ λBX w∗-convergent to x∗∗, and

{zn}∞n=1 ∈ ‖x∗∗ − y∗∗‖BX , w∗-convergent to y∗∗ − x∗∗. At this point we surely

have that ỹn = xn + zn is w∗-convergent to y∗∗, but we still need the norm

estimate on ỹn. Using the fact that we are working in X = C(K) or C0(K), it

suffices to truncate setting yn(t) = min{λ,max{−λ, ỹn(t)}}.

Proposition 1.3: Let K be a countable compact, Y a Banach space X =

C(K) or C0(K), T : BX → Y , T a C1,u-smooth operator. Then there exists a

C1,u-smooth and w∗-sequentially continuous canonical extension

T ∗∗: BX∗∗ → Y ∗∗.

Moreover, (T ∗∗)′(x∗∗) ∈ L∗∗(X,Y ∗∗) ⊂ L(X∗∗, Y ∗∗), for every x∗∗ ∈ BX∗∗ , i.e.

(T ∗∗)′(x∗∗) are w∗ − w∗ continuous.
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Proof: Given y∗ ∈ BY ∗ , we set fy∗ = y∗ ◦ T : BX → R. As fy∗ is C1,u-smooth,

and modulus of continuity of f ′
y∗ is ω(·), it is wsc and by Proposition 1.2 there

exists f∗∗
y∗ : BX∗∗ → R extending fy∗ , such that f∗∗

y∗ (x∗∗) = limn→∞ fy∗(xn).

In particular, T maps weakly Cauchy sequences into weakly Cauchy sequences.

We can therefore define the extension T ∗∗: BX∗∗ → Y ∗∗ as follows. Let

x∗∗ ∈ λBX∗∗ , x∗∗ = w∗ − limxn, xn ∈ λBX . We set

T ∗∗(x∗∗) = w∗ − lim
n→∞

T (xn) ∈ Y ∗∗.

This formula is independent of the sequence {xn}∞n=1, and the existence and

uniqueness of T ∗∗(x∗∗) is clear. We continue by proving that T ∗∗ is Fréchet

differentiable in its domain. We have for every y∗ ∈ BY ∗ , x∗∗ = w∗−limn→∞ xn

and z∗∗ = w∗ − limn→∞ zn from the domain

y∗(T ∗∗(x∗∗ + z∗∗) − T ∗∗(x∗∗)) = lim
n→∞

y∗(T (xn + zn) − T (xn)).

Also

y∗(T (xn + zn)) = y∗(T (xn)) + f ′
y∗(xn)(zn) +Rn,

where |Rn| ≤ ω(‖zn‖)‖zn‖.
Recall that by Proposition 1.2 and Lemma 1.1

lim
n→∞

f ′
y∗(xn) = (f∗∗

y∗ )′(x∗∗) in norm.

So

|y∗(T ∗∗(x∗∗ + z∗∗) − T ∗∗(x∗∗)) − (f∗∗
y∗ )′(x∗∗)(z∗∗)| ≤ ω(‖zn‖)‖zn‖.

In particular,

y∗
(T ∗∗(x∗∗ + λz∗∗) − T ∗∗(x∗∗)

λ
− T ∗∗(x∗∗ + ̺z∗∗) − T ∗∗(x∗∗)

̺

)

≤ ω(λ) +ω(̺),

independently of y∗ ∈ BY ∗ and z∗∗ ∈ BX∗∗ , which implies that T ∗∗(x∗∗) has

uniform directional derivatives. Similarly, we can prove the linear relations

between the directional derivatives in order to see that (T ∗∗)′(x∗∗) exists in the

Fréchet sense.

Once we have established the differentiability of T ∗∗, we continue by proving

that that (T ∗∗)′(x∗∗) = limn→∞(T ′(xn))∗∗ in the weak operator topology (note

that (T ′(xn))∗∗ is just the ordinary linear biconjugate operator to T ′(xn)). That

is to say, we claim that

y∗((T ∗∗)′(x∗∗)(z∗∗)) = lim
n→∞

y∗((T ′(xn))∗∗(z∗∗)
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for all y∗ ∈ BY ∗ and z∗∗ ∈ BX∗∗ .

Using the notation above, this follows using standard arithmetic from the

following relations.

((T ′(xn))∗∗(z∗∗) = w∗ − lim
k→∞

T ′(xn)(zk).

y∗(T ∗∗(x∗∗ + z∗∗) − T ∗∗(x∗∗)) = lim
n→∞

lim
k→∞

y∗(T (xn + zk) − T (xn)).

The weak operator topology convergence, together with the trick used in the

proof of Proposition 1.2 in order to preserve modulus ω(·) for the extension,

yield the same conclusion here, namely (T ∗∗)′(x∗∗) has modulus of continuity

ω(·) as a function of x∗∗. The w∗ − w∗ continuity of (T ∗∗)′(x∗∗) follows using

similar arguments.

The previous extension results will be used for a study of smooth operators on

C(K) spaces. In one of our corollaries below we prove that if T is noncompact,

then there exists x∗∗ ∈ BX∗∗ such that (T ∗∗)′(x∗∗) is a noncompact linear oper-

ator. This implies in particular that there exists a noncompact linear operator

from X to Y ∗∗, so that by Theorem 0.1 c0 is contained in Y ∗∗. However, we

first need to prove the reduction lemma below, which transfers the problem to

the simplest space c0 and gives more information.

Lemma 1.4: Given a countable ordinal α, let T : BC([0,α]) → X be a noncompact

C1,u-smooth operator. Then there exists F ∈ BC([0,α]) and a sequence {un}n∈N

of disjointly supported elements from C[0, α], with F + un ∈ BC([0,α]) for all

n ∈ N, and such that T (F + un) is a noncompact sequence in X .

Proof: We assume that X is separable. Suppose that {yn}n∈N is a sequence

in BC[0,α] such that T (yn) is noncompact. We will assume without loss of

generality that our original sequence has the following additional properties.

The sequence {yn}, and hence {T (yn)} are weakly Cauchy. Using the standard

argument from the proof of Lemma 12 in [H2], there exists some ε > 0, a

sequence {fi}i∈N ∈ BX∗ so that fi(T (yn)) = 0 for n < i and fi(T (yi)) > ε.

Moreover, as (BX∗ , w∗) is metrizable, {fi} is w∗-convergent, and (by replacing

fi by f2i+1 − f2i and passing to subsequences) we may assume that in fact {fi}
is w∗-null. Fix a system {εβ}β≤α of positive numbers such that

∑

β≤α εβ < ε/2.

Using an (necessarily finite) inductive argument in j, we are going to construct

a system consisting of the following objects:

(i) a decreasing sequence βj of ordinals α = β1 > β2 > · · · > βm = 0;

(ii) a decreasing system Mj+1 ⊂Mj of subsets of M1 = N, 1 ≤ j ≤ m;
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(iii) a function F ∈ BC([0,α]), F ↾[βj+1,βj+1]= F (βj+1) is constant;

(iv) a system of sequences {yj
n}n∈Mj ,1≤j≤m in BC[0,α], {y1

n}n∈N = {yn}n∈N,

and for every j < m, and n ∈ Mj+1 we have yj
n(τ) = yj+1

n (τ) for all τ ∈
[0, βj+1] ∪ [βj + 1, α]. For a fixed j, the system

{supp(yj+1
n − F ) ∩ [βj+1 + 1, α]}n∈Mj+1

is pairwise disjoint.

|fn(yj+1
n ) − fn(yj

n)| < εβj
for all n ∈Mj+1.

We present only the inductive step from j to j+1, as the first step requires only

minor changes. Suppose we have so far constructed: βi, Mi and the sequences

{yi
n}n∈Mi

for i ≤ j, and F is partially defined on [βj + 1, α].

If βj is nonlimit, the step to a smaller ordinal βj+1 = βj − 1 is trivial, setting

F (βj+1 + 1) = F (βj) = limn∈Mj
yn(βj), and using some standard perturbation

arguments together with the inductive assumption we choose appropriate Mj+1

and {yj+1
n }n∈Mj+1 . In this case we will have yj+1

n (βj+1 + 1) = F (βj+1 + 1).

So we may assume that βj is a limit ordinal. Put r = limn→∞ yn(βj).

For ̺ < η < βj , we define a continuous operator on C[0, α] by P η
̺ (x) =

x− χ[̺+1,η]x+ rχ[̺+1,η] for x ∈ C[0, α]. Similarly, for ̺ < η < θ < βj we define

P η,θ
̺ (x) = x− χ[̺+1,η]x+ rχ[̺+1,η] − χ[θ+1,βj]x+ rχ[θ+1,βj] for x ∈ C[0, α].

For a fixed ̺ < βj , we have the following alternatives. Either for every

̺ < η < βj there exists an infinite set {n ∈ Mj : |fn(P η
̺ (yj

n)) − fn(yj
n)| < εβj

}.
In this case we say that ̺ is of type I. Or there exists ̺ < η < βj such that

{n ∈Mj : |fn(P η
̺ (yj

n))−fn(yj
n)| < εβj

} is finite, and we say that ̺ is of type II.

Given yj
n is of type (̺, η) if |fn(P η

̺ (yj
n)) − fn(yj

n)| ≥ εβj
. We claim that there

exists ̺ < βj of type I. Assuming, by way of contradiction, that all ̺ < βj are

of type II, using the fact that βj is a limit ordinal we obtain for every N ∈ N

a sequence ̺1 < η1 < ̺2 < η2 < · · · < ̺N < ηN < βj and some yj
n, n ∈ Mj

which is of type (̺i, ηi) for all 1 ≤ i ≤ N . This is a contradiction with Lemma

5 of [H1]. This allows us to choose βj+1 = ̺ < βj of type I, and extend the

definition of F on [βj+1 + 1, βj] by the constant value r. We continue now by

defining Mj+1 and {yj+1
n }n∈Mj+1 by induction. Let n1 ∈ Mj, and using that

limτ→βj
yj

n1
(τ) = r, find ρ < η1 < βj such that

yj+1
n1

(τ) = yj
n1

(τ) for τ /∈ [η1 + 1, βj],

yj+1
n1

(τ) = r for τ ∈ [η1 + 1, βj ].

satisfies |fn1(y
j+1
n1

) − fn1(y
j
n1

)| < εβj
. Having found n1, . . . , ni and the corre-

sponding η1 < · · · < ηi < βj and yj+1
n1

, . . . , yj+1
ni

we proceed as follows. Pick
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ni+1 ∈Mj , ni+1 > ni such that

|fni+1(P
ηi
ρ (yj

ni+1
)) − fni+1(y

j
ni+1

)| < εβj
,

and set yj+1
ni+1

= P
ηi,ηi+1
ρ (yj

ni+1
) for a large enough ηi < ηi+1 < βj , so that

|fni+1(y
j+1
ni+1

) − fni+1(y
j
ni+1

)| < εβj
remains valid. We have thus described

Mj+1 = {ni}i∈N and {yj+1
n }n∈Mj+1 .

The above described inductive procedure ends in finitely many steps, m, due

to the well-ordering of α. The last step provides us with a desired sequence

{ym
n }n∈Mm

and a function F . To conclude, it remains to put un = ym
n −F .

Theorem 1.5: Given a scattered compact K and a Banach space X , let

T : BC(K) → X be a noncompact C1,u-smooth operator. Then there exists an

affine subspace c0 ∼= Y ⊂ C(K) such that T ↾Y ∩BC(K)
is noncompact. Moreover

every C1,u-smooth real function on Y ∩BC(K) is wsc.

Proof: Let {yn}n∈N ∈ BC(K) be such that {T (yn)}n∈N is not relatively com-

pact. By a standard argument of passing to suitable separable subalgebra of

C(K) generated by {yn}n∈N, it suffices to prove the statement for every count-

able compact. By the classical result of Mazurkiewicz and Sierpinski in [MS]

this is equivalent to the case K = [0, α], α a countable ordinal and X a sep-

arable subspace containing the range of T (C(K)). The reduction result now

follows from Lemma 1.4. The last fact on wsc property follows from the explicit

description of the space Y , which satisfies the conditions used in the proof of

Theorem 10 of [H2].

Theorem 1.5 gives a general positive answer to an affine version of Question

0.4. In the next section we will investigate noncompact operators from Bc0 , in

the canonical norm. It is standard to check (relying on the mentioned proof

of Theorem 10 in [H2]), that all our statements remain valid when the domain

is a convex and lattice bounded set with nonempty interior, as is the case in

the reduction theorem. So the results of the next section apply to the reduced

operators from a general scattered C(K). We have chosen the canonical version

for the obvious reason of notational simplicity and clarity.

2. Smooth operators from c0

In this section we establish general structural properties of T and X , assuming

that there exists a noncompact C1,u-smooth operator T : Bc0 → X .
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Our main structural result is that (T ∗∗)′(x∗∗) ∈ L∗∗(c0, X∗∗) is a noncompact

linear operator for some point x∗∗ ∈ Bc0 , which implies thatX∗∗ contains a copy

of ℓ∞, X∗ contains a complemented copy of ℓ1 and X has a c0 quotient. When

applied to some classes of X , such as Banach lattices, duals etc., we prove in

this paper that X indeed contains c0, as conjectured. For spaces with PCP

property we show that all C1,u-smooth operators are, in fact, compact. In fact,

most known examples of Banach spaces seem to be covered by our criterions.

On the other hand, by the result of Bourgain and Pisier [BP], every separable

space X not containing c0 is contained in a L∞ space not containing c0. This

seems to suggest a canonical way to a counterexample, namely, constructing a

concrete L∞ space. However this appears to be a delicate problem, since the

classical L∞ spaces of Bourgain and Delbaen ([B]) have PCP and cannot help

(as was suggested by Haydon in [Hay]). Let us finally recall the fact that due to

the reduction Theorem 1.5, all results in this section remain valid (upon obvious

modifications) for C1,u-smooth operators T : BC(K) → X , where K is countable

(or even scattered, if we use the appropriate biconjugate).

Lemma 2.1: Let X be a Banach space, T : Bc0 → X be a C1,u-smooth operator

such that T (Bc0) is not compact. Then there exist sequences {fn}∞n=1 ∈ BX∗

and {Tn}∞n=1 ∈ L(c0, X), sup ‖Tn‖ < ∞ such that 〈Tnei, fi〉 ≥ 1 whenever

i < n, where {ei}∞i=1 is the canonical basis of c0.

Proof: We know that T maps weakly Cauchy sequences from Bc0 to weakly

Cauchy sequences from X . The assumption that T (Bc0) is non-compact to-

gether with Lemma 12 and Proposition 7 of [H2] imply that there exist

u, {vn}∞n=1 ∈ Bc0 ({vn} ∼ {en}) such that limn→∞ T (u + vn) = T (u) does

not hold and therefore {T (u+ vn)}∞n=1 cannot be convergent. By passing to a

subsequence we may assume that for some δ > 0

‖T (u+ vn) − T (u+ vm)‖ > 2δ if n 6= m.

For the rest of the proof, we may without loss of generality assume that u = 0,

vn = en, T (0) = 0 and T ′(0) = 0. Indeed, these conditions are easily achieved

by replacing T with

T̃ : Bc0 → X : T̃

( ∞
∑

i=1

aiei

)

= T

(

u+

∞
∑

i=1

aivi

)

− T (u) − T ′(u)

( ∞
∑

i=1

aivi

)

.

In the above formula T ′(u) may be assumed to be a compact linear operator,

since otherwise by Theorem 0.1 c0 →֒ X and the conclusion of the lemma fol-

lows easily. As every compact operator from c0 can be approximated by finite



40 R. DEVILLE AND P. HÁJEK Isr. J. Math.

dimensional operators (l1 has the approximation property — see [LT1, p. 33]),

compact perturbations cannot violate the conclusion of the lemma. We have

‖T (ei)‖ > δ, and {T (ei)}i=1∞ ⊂ X is weakly null. By passing to a subse-

quence of {ei}∞i=1, relabelled as {ei}∞i=1 again, yi = T (ei) is a seminormalized

basic sequence in X ([LT1, p. 5] or [FHHMPZ, p. 173]), with its biorthogonal

functionals ϕi ∈ 1
δ
BX∗ satisfying

ϕn(ym) =
{

1 if n = m
0 otherwise.

In case X is a dual space, using standard perturbation arguments together

with Goldstine’s theorem these functionals can be assumed to be from the pre-

dual X∗.

Claim 2.2: For every τ > 0, there exists a subsequence {eni
}∞i=1 of {ei}∞i=1

such that N ≥ k implies

∣

∣

∣

∣

ϕnk
◦ T

( N
∑

i=1

αieni

)

− ϕnk
◦ T

( k
∑

i=1

αieni

)∣

∣

∣

∣

≤ τ for all |αi| ≤ 1.

Proof of Claim: By induction. Set n1 = 1, fix a finite set

S =
{

− 1,− l− 1

l
,− l− 2

l
, . . . ,

l − 1

l
, 1

}

⊂ [−1, 1] such that ω
(1

l

)

<
τ

4
.

By Corollary 10 of [H1] there exists m1 ∈ N such that N ≥ m1 implies

∣

∣

∣

∣

ϕn1 ◦ T
(

αen1 +

N
∑

i=m1

αiei

)

− ϕn1 ◦ T (αen1)

∣

∣

∣

∣

<
τ

4

for every α ∈ S, |αi| ≤ 1. We choose n2 = m1 and continue by finding m2 ∈ N,

m2 > m1, such that N ≥ m2 implies

∣

∣

∣

∣

ϕn2 ◦ T
(

αen1 + βen2 +

N
∑

i=m2

αiei

)

− ϕn2 ◦ T (αen1 + βen2)

∣

∣

∣

∣

<
τ

4

for every α, β ∈ S, |αi| ≤ 1.

We set n3 = m2 and continue in an obvious manner.

Using this inductive procedure, we obtain a sequence {eni
}∞i=1 such that N ≥

k implies
∣

∣

∣

∣

ϕnk
◦ T

( N
∑

i=1

αieni

)

− ϕnk
◦ T

( k
∑

i=1

αieni

)∣

∣

∣

∣

<
τ

4
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for every αi ∈ S. In order to pass to arbitrary values of αi ∈ [−1, 1] it suffices

to recall that ω(1/l) < τ/4.

Before we proceed, we reindex {eni
}∞i=1 as {ei}∞i=1 again.

Claim 2.3: For every τ > 0 there exists a subsequence {eni
}∞i=1 of {ei}∞i=1 such

that

∣

∣

∣

∣

ϕnk
◦ T

( k
∑

i=1

αieni

)

− ϕnk
◦ T (αkenk

)

∣

∣

∣

∣

≤ τ for all |αi| ≤ 1.

Proof of Claim: The proof relies again on Lemma 5 from [H1]. It gives us that

for k large enough (and depending only on the modulus of continuity of T ′),

l > k and αl ∈ S fixed, there exists i < k such that

|ϕnl
◦ T (αiei + αlel) − ϕnl

◦ T (αlel)| < τ/4 for |αi| ≤ 1.

In fact, Lemma 5 of [H1] gives an upper bound on the number of i for which

the above estimate is not valid. Since S is a finite set, Repeating this argument

for each αl ∈ S, we get that for k large enough but fixed and any l > k there

exists some il < k

|ϕnl
◦ T (αil

eil
+ αlel) − ϕnl

◦ T (αlel)| < τ/4

for αl ∈ S, |αil
| ≤ 1.

Clearly, there exists an infinite subsequence k < M1 ⊂ N such that n1 := il =

im for every l,m ∈ M1. Next, choose a large enough initial segment I ⊂ M1,

so that for every I < l ∈ M1, there exists some il, il 6= n1, such that for every

αn1 , αl ∈ S, and |αil
| ≤ 1

|ϕnl
◦ T (αn1en1 + αil

eil
+ αlel) − ϕnl

◦ T (αn1en1 + αlel)| < τ/8.

Again, there exists an infinite subsequence I < M2 ⊂ M1 such that

n2 := il = im for every l,m ∈ M2. We continue in an obvious way by

induction; after having constructed n1, . . . , nk ∈ N and infinite sequences

Mk ⊂Mk−1 ⊂ · · · ⊂M1 ⊂ N, Mi−1 ∋ ni < Mi, the inductive step consists

of choosing a long enough initial sequence I ⊂ Mk so that for all l > I,

l ∈ Mk, there exist il ∈ I, il /∈ {n1, . . . , nk}, such that for all |αil
| ≤ 1 and

αn1 , . . . , αnk
∈ S, αl ∈ S

∣

∣

∣

∣

ϕnl
◦ T

( k
∑

i=1

αni
eni

+ αil
eil

+ αlel

)

− ϕnl
◦ T

( k
∑

i=1

αni
eni

+ αlel

)∣

∣

∣

∣

<
τ

2k+2
.
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We then find an infinite subsequence I < Mk+1 ⊂Mk such that I ∋ nk+1 :=

il = im for every l,m ∈ Mk+1. The sequence {eni
}∞i=1 obtained in this way

satisfies

∣

∣

∣

∣

ϕnk
◦T

( k
∑

i=1

αieni

)

− ϕnk
◦ T (αkenk

)

∣

∣

∣

∣

≤
∣

∣

∣

∣

ϕnk
◦ T

( k−2
∑

i=1

αieni
+ αkenk

)

− ϕnk
◦ T (αkenk

)

∣

∣

∣

∣

+

∣

∣

∣

∣

ϕnk
◦ T

( k
∑

i=1

αieni

)

− ϕnk
◦ T

( k−2
∑

i=1

αieni
+ αkenk

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

ϕnk
◦ T

( k−3
∑

i=1

αieni
+ αkenk

)

− ϕnk
◦ T (αkenk

)

∣

∣

∣

∣

+

∣

∣

∣

∣

ϕnk
◦ T

( k−2
∑

i=1

αieni
+ αkenk

)

− ϕnk
◦ T

( k−3
∑

i=1

αiei + αkenk

)
∣

∣

∣

∣

+
τ

2k+2

≤
...

≤|ϕnk
◦ T (α1en1 + αkenk

) − ϕnk
◦ T (αkenk

)| + τ
( 1

23
+

1

24
+ . . .+

1

2k+2

)

≤τ
( 1

22
+ . . .+

1

2k+2

)

≤ τ

2

whenever αi ∈ S. Passing to arbitrary αi ∈ [−1, 1], at the expense of adding

τ/2 on the right hand side, is possible due to ω(1/l) < 1/4τ .

Combining Claim 2 and Claim 3 we obtain that given τ > 0 we may without

loss of generality assume that T satisfies (assuming n ≥ k):

∣

∣

∣

∣

ϕk ◦ T
( n

∑

i=1

αiei

)

− ϕk ◦ T (αkek)

∣

∣

∣

∣

≤ 2τ.

Recall that ϕk ◦ T (0) = 0, ϕk ◦ T (ek) = 1, ‖ϕk‖ ≤ 1/δ. Since

1 = ϕk ◦ T (ek) =

∫ 1

0

ϕk(〈T ′(tek), ek〉)dt

there exists t0 ∈ [0, 1] where ϕk(〈T ′(t0ek), ek〉) ≥ 1. Fix ∆ > 0 satisfying

ω(∆) < δ/8. Then for t ∈ [t0 − ∆, t0 + ∆] we have ‖T ′(tek) − T ′(t0ek)‖ ≤ δ/8
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and thus

ϕk(〈T ′(tek), ek〉) ≥ ϕk(〈T ′(t0ek), ek〉) −
1

δ
‖T ′(t0ek) − T ′(tek)‖ ≥ 7

8
.

Consequently,

ϕk ◦ T ((t0 + ∆/2)ekϕk ◦ T (t0ek) ≥ (7/8)(∆/2).

If, on the other hand, we have for some r ∈ [0, 1]

ϕk ◦ T ((r + ∆/2)ek) − ϕk ◦ T (rek) ≥ (6/8)(∆/2),

then there exists s ∈ [r, r + ∆/2] for which ϕk(〈T ′(sek), ek〉) ≥ 6/8 and thus

for every t ∈ [r, r + ∆/2] we have ‖T ′(tek) − T ′(sek)‖ ≤ δ/8 and in particular

ϕk(〈T ′(tek), ek〉) ≥ 6/8 − 1/8 = 5/8. We now set the value of τ = ∆/64, and

we suppose that {en}∞n=1 satisfies both Claim 2 and 3. For every k ∈ N there

exists an interval Jk ⊂ [0, 1] of length ∆ such that

ϕk(〈T ′(tek), ek〉) ≥ 7/8 for t ∈ Jk.

There exists an infinite subsequence {ni}∞i=1 of N such that [a, b] = J ⊂ ⋂∞
i=1 Jni

is an interval of length ∆/2. We may again WLOG assume that ni = i. We

have

ϕk ◦ T (bek) − ϕk ◦ T (aek) ≥ 7∆

24
.

Moreover we have for any |αi| ≤ 1

ϕk ◦ T
( k−1

∑

i=1

αiei + bek +

n
∑

i=k+1

αiei

)

− ϕk ◦ T
( k−1

∑

i=1

αiei + aek +

n
∑

i=k+1

αiei

)

≥ ϕk ◦ T (bek) − ϕk ◦ T (aek) − 4τ ≥ 7∆

24
− ∆

24
=

6∆

24
.

Thus, for every c ∈ [a, b], |αi| ≤ 1

ϕk

(〈

T ′
( k−1

∑

i=1

αiei + cek +
n

∑

i=1

αiei

)

, ek

〉)

≥ 5

8
.

To finish the proof of Lemma 1 we set for n ∈ N:

Tn: c0 → X to be Tn =
8

5δ
T ′

( n
∑

i=1

aei

)

,

fn = δϕn.

Our main structural result on noncompact smooth operators is the following.
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Theorem 2.4: Let X be a Banach space, T : Bc0 → X be a C1,u-smooth

operator such that T (Bc0) is not compact. Then there exists a point x∗∗ ∈
Bc∗∗0

, such that (T ∗∗)′(x∗∗) ∈ L∗∗(c0, X∗∗) is a noncompact linear operator.

Moreover, if X is a dual space, we receive, in addition, (T ∗∗)′(x∗∗)(c0) ⊂ X and

(T ∗∗)′(x∗∗) ↾c0 is noncompact.

Proof: In the proof of Lemma 2.1, we have established the existence of

u, {vn}∞n=1 ∈ Bc0 , such that vn are disjointly supported vectors ({vn} ∼ {en}),
and corresponding biorthogonal functionals {fn}∞n=1 ∈ BX∗ (or BX∗

, if X is a

dual space) to {T (vn) − T (u)}∞n=1 in X , so that

〈

T ′
( n

∑

i=1

avi

)

(vk), fk

〉

≥ µ > 0 for every n ≥ k.

It suffices to put x∗∗ = w∗− limn→∞
∑∞

i=1 avi, since (T ∗∗)′(x∗∗) being a weak

operator limit of the sequence {T ′(
∑n

i=1 avi)}∞n=1 is, due to the above inequality,

clearly a noncompact linear operator. The case when X is a dual space follows

by standard w∗-compactness argument using the additional information that

fi ∈ X∗.

The following are immediate consequences.

Corollary 2.5: Let X be a Banach space, T : Bc0 → X be a C1,u-smooth

operator such that T (Bc0) is not compact. Then X has the following properties.

(i) ℓ∞ →֒ X∗∗, ℓ1 is a complemented subspace of X∗ and X has a c0 quotient.

(ii) X does not have nontrivial cotype.

(iii) X is not weakly sequentially complete.

Proof of (i): (T ∗∗)′(x∗∗) ↾c0 is a noncompact operator, so by Theorem 0.1,

c0 →֒ X∗∗. The rest are general consequences of this fact, to be found in [LT1]

or [FHHMPZ].

Proof of (ii): By the principle of local reflexivity [FHHMPZ, p. 292] cn0 embeds

uniformly toX , which is equivalent toX lacking nontrivial cotype [DJT, p. 283].

Proof of (iii): The weak sequential completeness of X , together with the w∗-

to-weak operator topology continuity of the mapping x∗∗ → (T ∗∗)′(x∗∗) implies

that (T ∗∗)′(x∗∗)(c0) ⊂ X , so by (i) we get c0 →֒ X which is a contradiction

with the weak sequential completeness of X .
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Corollary 2.6: Let X be a Banach space with any of the following properties:

(i) X is a dual space,

(ii) X is a complemented subspace of a Banach lattice,

(iii) X is a subspace of a space with an unconditional basis,

(iv) X has property (u) of Pelczynski.

Suppose that there exists a C1,u-smooth operator T : Bc0 → X , such that T (Bc0)

is not compact. Then c0 →֒ X .

Proof: (i) follows along the same lines as (iii) of Corollary 2.5, using the func-

tionals from predual. (ii)–(iv) follow from (iii) of Corollary 2.5 and the classical

results in [LT1,2], according to which any Banach space from one of these classes

is weakly sequentially complete unless it contains c0.

Recall that a Banach space X has the point of continuity property (PCP),

if every weakly closed bounded subset of X contains a point of weak-to-norm

continuity for the identity mapping. Spaces with the PCP property have been

extensively studied by many authors. In particular it is known that all RNP

spaces belong to this class, and in the following theorem we will use the fun-

damental description of separable PCP spaces as those admitting a boundedly

complete skipped blocking finite dimensional decomposition. The last notion is

due to Bourgain and Rosenthal, and its equivalence to the PCP was established

by Ghoussoub and Maurey in [GM]. We refer to this paper for the result and

further references in this area.

Theorem 2.7: Let X be a Banach space with the PCP property. Then every

C1,u-smooth operator T : Bc0 → X is compact.

Proof: Since PCP is a hereditary property, we may without loss of generality

assume that X is separable. We proceed by contradiction, assuming that there

exists a C1,u-smooth noncompact operator T : Bc0 → X , and X has a boundedly

complete skipped blocking finite dimensional decomposition. That is to say,

there exists a sequence Gi of finite dimensional subspaces of X satisfying

(1) X = span
⋃∞

i=1Gi

(2) Gk ∩ span
⋃

i6=k Gi = {0}
(3) if {mk}∞k=1, {nk}∞k=1 are sequences from N, mk < nk + 1 < mk+1 then

setting Hk = span
⋃nk

i=mk
, {Hk}∞k−1 is a boundedly complete FDD for

span
⋃∞

k=1Hk.

In our proof we will use the notation from the proof of Lemma 2.1. The

starting point of our proof are the results obtained there, in particular, we
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assume that {ei}∞i=1 ∈ Bc0 is a seminormalized basic sequence equivalent to the

canonical basis, yi = T (ei) is a seminormalized basic sequence in X with its

biorthogonal functionals ϕi ∈ 1/δBX∗ satisfying

ϕn(ym) =
{

1 if n = m
0 otherwise.

Moreover, the following relations hold for some τ > 0.

∣

∣

∣

∣

ϕnk
◦ T

( k
∑

i=1

αieni

)

− ϕnk
◦ T (αkenk

)

∣

∣

∣

∣

≤ τ for all |αi| ≤ 1.

∣

∣

∣

∣

ϕk ◦ T
( n

∑

i=1

αiei

)

− ϕk ◦ T (αkek)

∣

∣

∣

∣

≤ 2τ for all n ≥ k, |αi| ≤ 1.

We now proceed by constructing sequences of integers {mk}∞k=1, {nk}∞k=1,

{lk}∞k=1 as follows:

Fix a sequence εn ց 0,
∑∞

n=1 εn < 1, put m1 = 1, l1 = 1. Set n1 > m1 such

that

dist

(

T (e1), span

n1
⋃

i=1

Gi

)

< ε1.

Next, put m2 = n1 + 2 and choose l2 which satisfies for |αi| ≤ 1

dist

(

T

(

e1 +

N
∑

i=l2

αiei

)

− T (e1), span

∞
⋃

i=m2

Gi

)

< ε2.

The existence of such l2 follows since T (e1 + x) − T (e1) maps weakly null se-

quences {xn} from Bc0 to weakly null sequences in X , and span
⋃m2−1

i=1 Gi is

finite dimensional. Next choose n2 such that

dist

(

T (el1 + el2) − T (el1), span

n2
⋃

i=m2

Gi

)

< ε2.

Put m3 = n2 + 2, and continue by induction as follows. Having constructed

{ni}k
i=1, {mi}k

i=1, {li}k
i=1, we set mk+1 = nk + 2. We then find lk+1 > lk for

which if |αi| ≤ 1 then

dist

(

T

( k
∑

i=1

eli +
N

∑

i=lk+1

αiei

)

− T

( k
∑

i=1

eli

)

, span
∞
⋃

i=mk+1

Gi

)

< εk.

Finally, find nk+1 > mk+1 for which

dist

(

T

( k+1
∑

i=1

eli

)

− T

( k
∑

i=1

eli

)

, span

nk+1
⋃

i=mk+1

Gi

)

< εk.
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Denote y0 = 0, yk = T (
∑k

i=1 eli), Hk = span
⋃nk+1

i=mk+1
Gi. With this notation,

it is clear that for some zk, ‖zk‖ < εk

uk := yk+1 − yk + zk ∈ Hk.

Since
∑N

k=1 uk = yN+1 +
∑N

k=1 zk is a norm bounded sequence, it is norm

convergent. Thus

y = lim
n→∞

yn = lim
n→∞

T (

n
∑

i=1

eli)

exists in norm. However,

ϕln(yn) ≥ ϕln(T (eln)) − τ = 1 − τ

ϕln(yn−1) ≤ ϕln(T (0)) + τ = τ.

Thus ‖yn − yn−1‖ ≥ (1 − 2τ) 1
‖ϕln‖ ≥ (1 − 2τ)δ, a contradiction.

In particular, and answering a question of Haydon from [Hay] in the negative,

we have the following.

Corollary 2.8: LetX be a Bourgain-Delbaen L∞ space (cf. [B]), T : Bc0 → X

be C1,u-smooth. Then T (Bc0) is compact.

Proof: Combining the results in [B] and [GM], these spaces have the PCP

property.

3. Summability properties of smooth functions on c0

Given a function f : Bc0 → R, we are interested in the value V =
∑∞

n=1 |f(en)|.
There are numerous results which give the convergence of the last summation.

In the complex scalar case (when c0 is over the complex field and f is com-

plex), Aron and Globevnik [AG] (generalizing K. John’s earlier work [J]) showed

that if f is a homogeneous polynomial, then V ≤ supx∈Bc0
|f(x)|. This esti-

mate is independent of the degree of the polynomial. Aron, Beauzamy and

Enflo [ABE] treated the corresponding real case. The result is that for a gen-

eral k-homogeneous polynomial V ≤ 4k2 supx∈Bc0
|f(x)|, but there exists k-

homogeneous polynomials for which V ≥ k supx∈Bc0
|f(x)|. Thus an upper

estimate using the supremum of f , independent on the degree, does not exists

even for homogeneous polynomials. However, in [H2], we prove the following de-

gree free estimate for every homogeneous polynomial: V ≤ 16 supx∈Bc0
‖f ′′(x)‖.
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The main result of this section is a construction of nonhomogeneous real poly-

nomials for which V cannot be estimated from above using f ′′ independently of

the degree.

It turns out that these results are closely connected with the behaviour of

smooth operators, in particular Question 0.5 (in fact, after checking Sections

3 and 4 of this note, the reader will realize that the validity of the estimate

from [H2] is essentially equivalent to the validity of Question 0.5). We recover a

sharper form of Pelczynski Theorem 0.2 from this and Theorem 1.5 (answering

Question 0.5 in the positive for polynomial operators). In the subsequent section

we construct a C1,1-smooth noncompact operator which fails this description

(and Question 0.5) and seems to be a half-way counterexample to Question 0.3.

Theorem 3.1: Let X be a Banach space, K be a scattered compact,

P : C(K) → X be a noncompact polynomial operator (not necessarily homo-

geneous). Then there exists a sequence {vn}∞n=0 ∈ BC(K), such that both

{vn − v0}∞n=1 and {P (vn) − P (v0)}∞n=1 are equivalent to the canonical basis

of c0.

Proof: By the reduction theorem we may replace C(K) by the space c0. Let

k = deg(P ). As P (Bc0) is not relatively compact, by [H2], Lemma 12, there

exists vn ∈ Bc0 , n = 0, 1, . . ., such that {vn}∞n=1 is equivalent to the unit basis of

c0 and ‖·‖−limn→∞ P (v0+vn) does not exist. Put y0 = P (v0), yn = P (v0+vn),

zn = yn − y0. As was shown in the proof of Lemma 2.1, by passing to a

subsequence without loss of generality {zn}∞n=1 is a C-seminormalized weakly

null Schauder basic sequence (C−1 ≤ ‖zn‖ ≤ C for some C). We claim that

{zn}∞n=1 is equivalent to the canonical basis of c0. To this end, it suffices to

show that there exists K ∈ R such that

sup
|αn|≤1

∥

∥

∥

∥

∞
∑

n=1

αnzn

∥

∥

∥

∥

≤ K.

which is equivalent to
∑∞

n=1 |φ(zn)| ≤ K for every φ ∈ BX∗ .

Assume P̃ (x) = P (v0 + x) − P (v0) =
∑k

l=1 Pl(x), where Pl are homogeneous

polynomials.

Fixing l, there exists Kl ∈ R, such that for every φ ∈ BX∗ , φ ◦ Pl: c0 → R is

a real valued k-homogeneous polynomial satisfying ‖(φ ◦ Pl)
′′(x)‖ ≤ Kl for all

x ∈ Bc0 .

By ([H2], Lemma 15)

∞
∑

n=1

|φ ◦ Pl(vn)| ≤ 16CkKl.
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Consequently,

∞
∑

n=1

∣

∣

∣

∣

φ ◦
( k

∑

l=1

Pl(vn)

)∣

∣

∣

∣

=

∞
∑

n=1

∣

∣

∣

∣

( k
∑

l=1

φ ◦ Pl(vn)

)∣

∣

∣

∣

≤
k

∑

l=1

16CkKl = K <∞.

This estimate is true for every φ ∈ BX∗ .

The improvement of Theorem 3.1 with comparison to Theorem 0.2 consists of

showing that P actually carries a translate of the canonical basis of c0 into the

range space X , in the spirit of Theorem 0.1. The next simple example shows

that Theorem 3.1 is optimal in the sense that the shifting of the c0 basis by y0

is necessary, so the result is necessarily of affine rather than linear nature.

Example 3.2: Put P (x): c0 → c0, P ((xi)
∞
i=1) = (x4

1, x
2
1x

2
2, x

2
1x

2
3, . . .). Then P

is noncompact, but limn→∞ P (un) = 0 for every weakly null sequence in c0.

Choosing vi = ei+1, i = 1, 2, . . . gives P (v0) = e1, P (v0 + vi) = e1 + ei+1. Since

the image of P is contained in the positive cone of c0, we also see that we cannot

hope for Bc0 ⊂ P (Bc0).

We continue with the main result of this section, a construction of a special se-

quence of C1,1-smooth functions failing the good summability properties. These

functions will be used later to construct a C1,1-smooth noncompact operator

which fails the statement of Theorem 3.1 (and also Question 0.5).

Theorem 3.3: Let φn: Bcn
0
→ R be defined as

φn(xi) =
1√
n

n
∏

i=1

(1 − x4
i ).

Then there exists C independent of n such that φ′′n: Bcn
0
→ L(cn0 , ℓ

n
1 ),

φ′′n(x) =
(∂2φn(x)

∂xi∂xj

)n

i,j=1
satisfies ‖φ′′n‖L(cn

0 ,ℓn
1 ) ≤ C.

Proof: First note that for (aij)
n
i,j=1 = L ∈ L(cn0 , ℓ

n
1 ), we have ‖L‖L(cn

0 ,ℓn
1 ) =

maxεj=±1

∑n
i=1 |

∑n
j=1 aijεj| ≤

∑n
i=1

∑n
j=1 |aij |. Now we have

∂2φn(x)

∂xi∂xj

=

{ −12√
n
x2

i

∏n
k=1
k 6=i

(1 − x4
k) if i = j,

16√
n
x3

i x
3
j

∏n
k=1

k 6=i,j

(1 − x4
k) if i 6= j.
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We wish to estimate for x ∈ Bcn
0

the quantities

A = sup
x∈Bcn

0

n
∑

i=1

∣

∣

∣

∂2φn(x)

∂x2
i

∣

∣

∣
,

B = sup
x∈Bcn

0

n
∑

i=1

n
∑

j=1
i6=j

∣

∣

∣

∂2φn(x)

∂xi∂xj

∣

∣

∣
.

without loss of generality assume that 0 ≤ x1 ≤ x2 . . . ≤ xn ≤ 1, so that

(1 − x4
k) ≥ (1 − x4

n) and put

F ((xi)
n−1
i=1 ) :=

12√
n

+
12√
n

( n−1
∑

i=1

x2
i

n−1
∏

k=1

(1 − x4
k)

)

≥ 12√
n

( n
∑

i=1

x2
i

n−1
∏

k=1

(1 − x4
k)

)

≥ 12√
n

n
∑

i=1

x2
i

n
∏

k=1
k 6=i

(1 − x4
k).

The reason for introducing F instead of estimating directly the original term

is the useful symmetry of ∇F , as we will see below. There exists z = (zi)
n−1
i=1 ∈

Bcn−1
0

such that F (z) = maxx∈B
c
n−1
0

F (x) ≥ A. Clearly, either z ∈ ∂Bcn−1
0

or else ∇F (z) = 0. In the first case, zi = 1 for some i ≤ n − 1 and thus

F (z) = 12/
√
n. Suppose z /∈ ∂Bcn−1

0
.

∇F (z) =
12√
n

(

2zi

n−1
∏

k=1

(1 − z4
k) − 4z3

i

( n−1
∑

j=1

z2
j

) n−1
∏

k=1
k 6=i

(1 − z4
k)

)n−1

i=1

= 0.

Put γ =
∑n−1

j=1 z
2
j . Unless zi = 0, we have (1 − z4

i ) − 2γz2
i = 0. Solving

this equation for z2
i gives z2

i = −γ ±
√

γ2 + 1. However, since z2
i > 0, we have

z2
i =

√

γ2 + 1− γ = z2
j for every i, j ≤ n− 1, for which zi, zj 6= 0. Suppose that

m = card{i : zi 6= 0} ≤ n− 1 and |zi| = λ whenever zi 6= 0. Thus λ = 1
4
√

1+2m
,

and

F (z) =
12√
n

(1 +mλ2(1 − λ4)m) =
12√
n

(1 +
m√

1 + 2m
(1 − 1

1 + 2m
)m)

≤ 12√
n

+
12

√
m√
n

(

1 − 1

1 + 2m

)m

≤ K,

where K is a constant independent of n and m < n. Indeed, recall that

limm→∞(1 − 1
1+2m

)m = 1√
e
. In order to estimate B, suppose without loss
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of generality 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Then

16√
n

n
∑

i=1

n
∑

j=1
j 6=i

x3
i x

3
j

n
∏

k=1
k 6=i,j

(1 − x4
k) ≤ 16√

n

( n−2
∑

i=1

n−2
∑

j=1

x3
i x

3
j

n−2
∏

k=1

(1 − x4
k) + S0 + S1 + 1

)

where Sτ = x3
n−τ

∑n−2
j=1 x

3
j

∏n−2
k=1 (1−x4

k). By comparing this expression with the

formula for F (x), and keeping in mind that x2
j ≥ x3

j we get 16/
√
n(S0+S1+1) ≤

4K. In order to estimate B, set (again for reasons of symmetry of ∇G which

makes the calculations easier)

G(x) =
16√
n

(

n−2
∑

i=1

n−2
∑

j=1
j 6=i

x3
ix

3
j

n−2
∏

k=1

(1 − x4
k) +

n−2
∑

i=1

1

2
x6

i

n−2
∏

k=1

(1 − x4
k)),

and note that clearly

max
x∈B

c
n−2
0

G(x) + 4K ≥ max
x∈B

c
n−2
0

G(x) +
16√
n

(S0 + S1 + 1) ≥ B.

Suppose z ∈ Bcn−2
0

, G(x) = maxx∈B
c
n−2
0

G(x) (and WLOG zi ≥ 0). In case

z ∈ ∂Bcn−2
0

, we have zi = 1 for some i and G(z) = 0. Thus z /∈ ∂Bcn−2
0

and so

∇G(z) = 0. A straitforward calculation gives

∂G

∂xi

(z) =
16√
n

(

3z2
i

n−2
∏

k=1

(1 − z4
k)α− 4z3

i

n−2
∏

k=1
k 6=i

(1 − z4
k)β

)

= 0

where α =
∑n−2

j=1 z
3
j and β =

∑n−2
l=1

∑n−2
j=1 z

3
l z

3
j +

∑n−2
j=1

1
2z

6
j . Therefore, when-

ever zi 6= 0, we have 3(1 − z4
i )α − 4ziβ = 0. Thus zi, zj 6= 0 implies 1

zi
− z3

i =
1
zj

− z3
j . As the real function φ(t) = 1

t
− t3 is decreasing on R

+, this gives

zi = zj = λ. Denote by m = card{i : zi 6= 0}. We have

G(z) =
16√
n

(

m2λ6(1 − λ4)m +
1

2
mλ6(1 − λ4)m

)

≤ 2
16√
n
m2λ6(1 − λ4)m.

In order to estimate the last expression, fix m and define a function φ(λ) =

λ6(1 − λ4)m. On the interval [0, 1] φ has only one critical (and clearly a lo-

cal maximum) point λ = 4

√

3
3+2m

. So G(z) = 2·16√
n
m2( 1

1+ 2
3m

)
3
2 (1 − 1

1+ 2
3m

)m.

Since m ≤ n − 2 and limm→∞(1 − 1
1+ 2

3m
)m = e−

3
2 , there exists a constant

L, independent of the values n,m < n, for which G(z) ≤ L. Finally, setting

C = L+ 5K ≥ A+B satisfies the requirements.



52 R. DEVILLE AND P. HÁJEK Isr. J. Math.

4. Range of C1,1 smooth operator

Using the functions constructed above, we are now going to construct an C1,1-

smooth noncompact operator such that the set T (Bc0) does not contain a trans-

late of the canonical basis of c0 (and consequently fails Question 0.5). This

phenomenon cannot occur with polynomials, or real analytic operators. In fact,

we are able to control the “positive” span of T (Bc0) as well. However, using

negative coefficients generates the copy of c0 in the range. Changing the con-

struction somewhat, we are able to eliminate c0 basis from spans containing a

limited number of negative coordinates. We do not present these modifications

here (as they are technical and do not suffice for a general counterexample), but

they may shed some light on the delicacy of the problem.

Let T : c0 → ℓ∞ be an operator, T (x) = (fn(x))∞n=1.

Lemma 4.1: Let T : Bc0 → ℓ∞ be a C1-smooth operator. Then

T ′: Bc0 → L(c0, ℓ∞)

is uniformly continuous with modulus of continuity ω(t) if and only if every

f ′
n: Bc0 → ℓ1 is uniformly continuous with modulus of continuity ω(t).

Proof: Consider an infinite matrix (aij)
∞
i,j=1, which represents L ∈ L(c0, ℓ∞).

More precisely,

L(ek) = (aik)∞i=1 ∈ ℓ∞.

Since L is bounded, we have

sup
i∈N

∞
∑

k=1

|aik| = ‖L‖L(c0,ℓ∞).

Put gi = (aik)∞k=1 ∈ ℓ1. We can write L = (gi)
∞
i=1, ‖L‖L(c0,ℓ∞) = supi∈N ‖gi‖ℓ1 .

Now given x, y ∈ Bc0 , ‖x − y‖ = t, (f ′
n(x))∞n=1 = T ′(x) = L = (gi)

∞
i=1,

(f ′
n(y))∞n=1 = T ′(y) = S = (hi)

∞
i=1 we have

‖L− S‖L(c0,ℓ∞) = sup
i∈N

‖gi − hi‖ℓ1 .

Clearly, ‖L − S‖L(c0,ℓ∞) ≤ ω(t) if and only if for every i ∈ N, ‖gi − hi‖ℓ1 ≤
ω(t).

In the rest of the note we will construct simultaneously a Banach space

X →֒ ℓ∞ and a C1,1-smooth and noncompact operator T : Bc0 → X , such

that T (Bc0) does not “contain” a canonical basis of c0.
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First, let C be from Theorem 3.3, fix a sequence ni = 24i, and put

ψni
: R

ni → R,

ψni
(x) =

1

2iC

( 1√
ni

− φni
(x)

)

.

Clearly, ψni
(0) = 0, ψ′

ni
(0) = 0, ψni

is symmetric and ‖ψ′′
ni
‖ ≤ 2−i on Bc

ni
0

.

Since ψni
is a symmetric function, given A ⊂ N, |A| = ni, we may put

ψA
ni

: Bc0 → R to be

ψA
ni

((xj)
∞
j=1) = ψni

((xj)j∈A).

The system of tuples of sets

Sk =

{

(A1, A2, . . . , Al) :
Ai ⊂ N, |A1| < |A2| < · · · < |Al|,
|Ai| ∈ {ni}∞i=1, |Al| = nk

}

is countable, and so is S =
⋃∞

k=1 Sk. For (A1, . . . , Al) ∈ S put

ψ(A1,...,Al) : Bc0 → R, ψ(A1,...,Al)(x) =

l
∑

i=1

ψAi

|Ai|(x).

Fix a bijection ω: S → N. We define τn: Bc0 → R by τn(x) = ψω−1(n)(x), and

T : Bc0 → ℓ∞ by T (x) = (τ1(x), τ2(x), . . .). By Lemma 4.1, T is C1,1-smooth.

We define X = spanT (Bc0) →֒ ℓ∞.

Theorem 4.2: T : Bc0 → X is a noncompact, C1,1-smooth operator, with the

property that there is no sequence {yn}∞n=0 in T (Bc0) such that {yn − y0}∞n=1

is equivalent to the canonical basis of c0.

Proof: It remains to prove the statement about {yn − y0}∞n=1. We proceed by

contradiction, assuming yn = T (un), where un ∈ c00. Clearly, by passing to

a subsequence of {un}∞n=1 without loss of generality there exists some m ∈ N,

δ > 0 and a sequence m < j1 < j2 < · · ·, such that supp(u0) ⊂ [1,m], un
jn
> δ.

Take a set A ⊂ {jk}∞k=1, |A| = np = 24p. We have

ψA
np

(un) =
1

2pC

1
√
np

(

1 −
∏

i∈A

(1 − un
i

4)

)

≥ 1

2pC
√
np

· δ4 for n ∈ A,

ψA
np

(u0) = 0.

Thus τω((A))(u
0) = 0, yi

ω(A) = τω((A))(u
j) ≥ 1

2pC
1√
np
δ4. So ‖∑

j∈A(yj − y0)‖ ≥
∑

j∈A y
j

ω(A) ≥ 1
2pC

· √npδ
4, which is a contradiction, since the last expression

can be made arbitrarily large (by the choice of p).
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In fact, our construction enables us to prove a somewhat more general state-

ment. Let Nn ∈ N, an
i ∈ R where 1 ≤ i ≤ Nn, yn,i = T (xn,i). The main

conjecture on containment of c0 in X would be disproved if for each such sys-

tem, {
∑Nn

i=1 a
n
i y

n,i}∞n=1 is not equivalent to the canonical basis of c0. We are

able to prove this statement under assumption that an
i ≥ 0. This is not suf-

ficient to ensure that c0 6 →֒ X , and in fact in our construction the sequence

{T (
∑k+1

i=1 ei) − T (
∑k

i=1 ei)}∞k=1 is equivalent to {ek}∞k=1 and thus c0 →֒ X .

However, further modifications of our construction may lead to the full coun-

terexample. Since the following result is not central in this work, we present

only a sketch of the argument.

Proposition 4.3: In the notation above, assume that an
i ≥ 0. Then

{∑Nn

i=1 a
n
i y

n,i}∞n=1 is not equivalent to the canonical basis of c0.

Sketch of Proof: Assume, By contradiction, that {∑Nn

i=1 a
n
i y

n,i}∞n=1 is equiva-

lent to the canonical basis of c0. Let {mn}∞n=1 be a sequence form N such that

there exists ∆ > 0
Nn
∑

i=1

an
i y

n,i
mn

≥ ∆.

We will distinguish two cases (which involve passing to subsequences).

Case I: There exists {mn}∞n=1 as above and such that

ω−1(mn) = (An
1 , . . . , A

n
ln

) where lim
n→∞

|An
1 | = ∞.

Case II: limn→∞
k→∞

sup|A1|=nk

∑Nn

i=1 a
n
i y

n,i

ω(A1,...,Al)
= 0

In Case I, we may clearly assume, by passing to a subsequence, that ñ > n

implies |An
ln
| < |Añ

1 |. Thus

Nn
∑

i=1

an
i y

n,i

ω(A1
1,...,A1

l1
,A2

1,...,A2
l2

,...,Añ
1 ,...,Añ

lñ
)
≥

Nn
∑

i=1

an
i y

n,i

ω(An
1 ,...,An

ln
) ≥ ∆.

In particular, ‖∑p
n=1

∑Nn

i=1 a
n
i y

n,i‖∞ ≥ p ·∆ a contradiction. ( Note that this

case can be handled without the assumption an
i ≥ 0.)

In Case II, we may without loss of generality assume that there exists p ∈ N

such that ω−1(mn) = (An), |An| = np. Next, choose a set A, |A| = nr, A
n ⊂ A

for 1 ≤ n ≤ nr/np. It is easy to observe that

ψA
nr

(x) ≥ 1

2rC

1√
nr

(

1 −
∏

i∈An

(1 − x4
i )

)

=
1

2r−p

√
np√
nr

ψAn

np
(x).
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Thus (due to an
i ≥ 0)

nr
np
∑

n=1

Nn
∑

i=1

an
i y

n,i

ω(A) ≥
nr

np

1

2r−p

√

np

nr

∆ = 2r−p∆

a contradiction.
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